PRE-ACGREDITATION MATHS \& LITERACY FOR NURSING

graduated exercises and practice exam

Andrew Spencer

$\ulcorner\mathbf{A}+$ National

PRE-ACCREDITATION

Maths \& Literacy for Nursing

Contents

Introduction

About the Author

Acknowledgements

LITERACY

Unit 1
Unit 2
Unit 3
MATHEMA
Unit 4
Unit 5

Unit 6
Decimals
Section A: Addition
Section B: Subtraction
Section C: Multiplication
Section D: Division
Unit 7
Fractions
Section A: Converting fractions to decimals
Section B: Rounding off decimals to one (1) place
Section C: Combining converting fractions to decimals and rounding off
Section D: Improper fractions that work out to be greater than one (1)
Unit 8
Percentages
Section A: Converting percentages to fractions
Section B: Converting fractions to percentages
Section C: Finding a percentage of an amount
Measurement Conversions
SAMMPLIE CHAPTER
Section B: Units of volume
Section C: Units of length

Unit 10	IV Rates Section A: Time Section B: Drops per minute (dpm) Section C: Millilitres (mL) per hour	36
Unit 11	Tablet Dosage	41
Unit 12	Medicinal Mixtures and Solutions	42
Unit 13	Earning Wages/Work Time	43
Unit 14	Squaring Numbers Section A: Introducing square numbers Section B: Applying square numbers to nursing	45
Unit 15	Practice Written Exam for Nursing	49
Glossary Formulae a Notes		60 62 66

SAMPLE CHAPTER

MATHEMATICS

Unit 4: General Mathematics

Short-answer questions

Specific instructions to students

- This unit will help you to improve your general mathematical skills.
- Read the following questions and answer all of them in the spaces provided.
- You may not use a calculator.
- You need to show all working.

QUESTION 1

State the unit of measurement that you would use to measure:
a the length of a bandage
Answer:
b the temperature of a steriliser
Answer:
c an amount of sodium chloride solution

Answer:

d the weight of a patient
Answer:
e the voltage of a monitoring device

Answer:

f the length of an IV feeder
Answer:
g the cost of a consultation
SAMPLE CHAPTER

Answer:

QUESTION 2

Give examples of how the following might be used in nursing.
a percentages
Answer:

Answer:
c fractions

Answer:

d mixed numbers

Answer:

e ratios

Answer:

f angles
Answer:

QUESTION 3

Convert the following units.
a 12 kg to grams

Answer:

b 4 tonnes to kilograms

Answer:

c 120 cm to metres

Answer:

d 1140 mL to litres

Answer:

e 1650 g to kilograms
Answer:
\qquad
f 1880 kg to tonnes
Answer:

Answer

 g 13 m to centimetres
Answer:

h 4.5 L to millilitres
Answer:

QUESTION 4

Write the following in descending order.
$\begin{array}{llllll}0.4 & 0.04 & 4.1 & 40.0 & 400.00 & 4.0\end{array}$
Answer:

QUESTION 5

Write the decimal number that is between:
a 0.2 and 0.4

Answer:

b 1.8 and 1.9
Answer:
c 12.4 and 12.6

Answer:

d 28.3 and 28.4
Answer:
e 101.5 and 101.7.

Answer:

QUESTION 6

Round off the following numbers to two (2) decimal places.
a 12.346
Answer:
\qquad
b 2.251
Answer:
c 123.897

Answer:

d 688.882
Answer:
e 1209.741

Answer:

\qquad

QUESTION 7

Estimate the following by approximation.
a $1288 \times 19=$

Answer:

b $201 \times 20=$

Answer:

c $497 \times 12.2=$
Answer:
d $1008 \times 10.3=$

Answer:

e $399 \times 22=$

Answer:

f $201-19=$
Answer:

SAMPLE CHAPTER

Answer:

c 5979 from 8014

Answer:

d 11989 from 26221

Answer:

e 108767 from 231111

Answer:

QUESTION 10

Use division to solve the following.
a 2177 divided by 7

Answer:

b 4484 divided by 4

Answer:

c $63.9 \div 0.3$

Answer:

d $121.63 \div 1.2$

Answer:

e $466.88 \div 0.8$

Answer:

\qquad

The following information is provided for Question 11.

To solve using BODMAS, in order from left to right, solve the Brackets first, then Of, then Division, then Multiplication, then Addition and lastly Subtraction. The following example has been done for you.

EXAMPLE

Solve $(4 \times 7) \times 2+6-4$.

STEP 1

Solve the Brackets first: $(4 \times 7)=28$.

STEP 2

No Division, so next solve Multiplication: $28 \times 2=56$.

STEP 3

Addition is next: $56+6=62$.

STEP 4

Subtraction is the last process: $62-4=58$.

FINAL ANSWER:

QUESTION 11

Using BODMAS, solve the following.
a $(6 \times 9) \times 5+7-2$

Answer:

b $(9 \times 8) \times 4+6-1$

Answer:

c $3 \times(5 \times 7)+11-8$

Answer:

d $5 \times(8 \times 3)+9-6$

Answer:

e $7+6 \times 3+(9 \times 6)-9$

Answer:

f $6+9 \times 4+(6 \times 7)-21$

Answer:

Unit 10: IV Rates

Section A: Time

Short-answer questions

Specific instructions to students

- This unit will help you to calculate the volume of IV against the time needed to dispense it.
- Read the following questions and answer all of them in the spaces provided.
- You may not use a calculator.
- You need to show all working.

Use this formula to calculate the time left to dispense the amount of fluid remaining in the bag. $\frac{\text { volume remaining (in } \mathrm{mL} \text {) }}{\text { drops per minute }} \times \frac{\text { drop factor }}{1}$ $=$ minutes remaining

QUESTION 1

The drops per minute are set at 40 and 460 mL remains in the IV bag. The drop factor is set at 15 drops per millilitre. How many minutes remain?

Answer:

QUESTION 2

The drops per minute are set at 40 and 410 mL remains in the IV bag. The drop factor is set at 15 drops per millilitre. How many minutes remain?

Answer:

QUESTION 3

The drops per minute are set at 40 and 380 mL remains in the IV bag. The drop factor is set at 15 drops per millilitre. How many minutes remain?

Answer:

QUESTION 4

The drops per minute are set at 40 and 315 mL remains in the IV bag. The drop factor is set at 15 drops per millilitre. How many minutes remain?

Answer:

QUESTION 5

The drops per minute are set at 40 and 245 mL remains in the IV bag. The drop factor is set at 15 drops per millilitre. How many minutes remain?

Answer:

QUESTION 6

The drops per minute are set at 40 and 480 mL remains in the IV bag. The drop factor is set at 20 drops per millilitre. How many minutes remain?

Answer:

QUESTION 7

The drops per minute are set at 40 and 440 mL remains in the IV bag. The drop factor is set at 20 drops per millilitre. How many minutes remain?

SAMPLE C'HAPAPTER

iStockphoto/Syldavia

QUESTION 8

The drops per minute are set at 40 and 400 mL remains in the IV bag. The drop factor is set at 20 drops per millilitre. How many minutes remain?

Answer:

QUESTION 9

The drops per minute are set at 40 and 365 mL remains in the IV bag. The drop factor is set at 20 drops per millilitre. How many minutes remain?

Answer:

QUESTION 10

The drops per minute are set at 40 and 305 mL remains in the IV bag. The drop factor is set at 20 drops per millilitre. How many minutes remain?

Answer:

QUESTION 11

The drops per minute are set at 40 and 490 mL remains in the IV bag. The drop factor is set at 60 drops per millilitre. How many minutes remain?

Answer:

QUESTION 12

The drops per minute are set at 40 and 410 mL remains in the IV bag. The drop factor is set at 60 drops per millilitre. How many minutes remain?

Answer:

QUESTION 13

The drops per minute are set at 40 and 330 mL remains in the IV bag. The drop factor is set at 60 drops per millilitre. How many minutes remain?

Answer:

QUESTION 14

The drops per minute are set at 40 and 315 mL remains in the IV bag. The drop factor is set at 60 drops per millilitre. How many minutes remain?

Answer:

QUESTION 15

The drops per minute are set at 40 and 265 mL remains in the IV bag. The drop factor is set at 60 drops per millilitre. How many minutes remain?

Answer:

SAMPLE CHAPTER

Section B: Drops per minute (dpm)

Short-answer questions

Specific instructions to students

- This unit will help you to calculate the volume of IV against the time needed to dispense it.
- Read the following questions and answer all of them in the spaces provided.
- You may not use a calculator.
- You need to show all working.

Use this formula to calculate the drops per minute (dpm).
$\frac{\text { total volume to be administered (in } \mathrm{mL} \text {) }}{\text { time (in minutes) }} \times \frac{\text { drop factor }}{1}$
$=$ drops per minute (dpm)

QUESTION 1

The total volume to be administered is 1400 mL over 600 minutes (10 hours) with a drop factor of 15 . How many drops per minute will this be?

Answer:

QUESTION 2

The total volume to be administered is 1400 mL over 540 minutes (9 hours) with a drop factor of 15 . How many drops per minute will this be?

Answer:

QUESTION 3

The total volume to be administered is 1000 mL over 480 minutes (8 hours) with a drop factor of 15 . How many drops per minute will this be?

Answer:

QUESTION 4

The total volume to be administered is 800 mL over 300 minutes (5 hours) with a drop factor of 15 . How many drops per minute will this be?

Answer:

QUESTION 5

The total volume to be administered is 500 mL over 240 minutes (4 hours) with a drop factor of 15 . How many drops per minute will this be?

Answer:

QUESTION 6

The total volume to be administered is 1600 mL over 600 minutes (10 hours) with a drop factor of 20 . How many drops per minute will this be?

Answer:

QUESTION 7

The total volume to be administered is 1600 mL over 480 minutes (8 hours) with a drop factor of 20 . How many drops per minute will this be?

Answer:

QUESTION 8

The total volume to be administered is 1200 mL over 600 minutes (10 hours) with a drop factor of 20 . How many drops per minute will this be?

Answer:

E CHAPTER

QUESTION 9

The total volume to be administered is 1000 mL over 420 minutes (7 hours) with a drop factor of 20 . How many drops per minute will this be?

Answer:

QUESTION 10

The total volume to be administered is 800 mL over 300 minutes (5 hours) with a drop factor of 20 . How many drops per minute will this be?

Answer:

QUESTION 11

The total volume to be administered is 1400 mL over 600 minutes (10 hours) with a drop factor of 60 . How many drops per minute will this be?

Answer:

QUESTION 12

The total volume to be administered is 1200 mL over 360 minutes (6 hours) with a drop factor of 60 . How many drops per minute will this be?

Answer:

QUESTION 13

The total volume to be administered is 1000 mL over 600 minutes (10 hours) with a drop factor of 60 . How many drops per minute will this be?

Answer:

QUESTION 14

The total volume to be administered is 800 mL over 300 minutes (5 hours) with a drop factor of 60 . How many drops per minute will this be?

Answer:

QUESTION 15

The total volume to be administered is 500 mL over 180 minutes (3 hours) with a drop factor of 60 . How many drops per minute will this be?

Answer:

Section C: Millilitres (mL) per hour

Short-answer questions

Specific instructions to students

- This unit will help you to calculate the volume of IV against the time needed to dispense it.
- Read the following questions and answer all of them in the spaces provided.
- You may not use a calculator.
- You need to show all working.

```
Use this formula to calculate the mL per hour 
administered.
total volume to be administered (in mL)
    time (hours)
= millilitres (mL) per hour
```


QUESTION 1

The total volume to be administered is 1000 mL over
10 hours How many millilitres per hour will this be?

Answer:

QUESTION 2

The total volume to be administered is 1200 mL over 10 hours. How many millilitres per hour will this be?

Answer:

QUESTION 3

The total volume to be administered is 1400 mL over 10 hours. How many millilitres per hour will this be?

Answer:

QUESTION 4

The total volume to be administered is 800 mL over 10 hours. How many millilitres per hour will this be?

Answer:

QUESTION 5

The total volume to be administered is 500 mL over 10 hours. How many millilitres per hour will this be?

Answer:

Use this formula to calculate millilitres per minute.
total volume to be administered (mL)
time (minutes)
$=$ millilitres (mL) per minute

QUESTION 1

The total volume to be administered is 1000 mL over 600 minutes. How many millilitres per minute will this be?

Answer:

QUESTION 2

The total volume to be administered is 1200 mL over 600 minutes. How many millilitres per minute will this be?

Answer:

QUESTION 3

The total volume to be administered is 1400 mL over 600 minutes. How many millilitres per minute will this be?

Answer:

QUESTION 4

The total volume to be administered is 800 mL over 300 minutes. How many millilitres per minute will this be?

Answer:

QUESTION 5

The total volume to be administered is 500 mL over 500 minutes. How many millilitres per minute will this be?

Answer:

SAMPLE CHAPTER

Unit 11: Tablet Dosage

Short-answer questions

Specific instructions to students

- This unit will help you to calculate the number of tablets that need to be administered.
- Read the following questions and answer all of them in the spaces provided.
- You may not use a calculator.
- You need to show all working.

Remember to convert all units of weight so that they are all in the same unit.

You will need to use the 'dose to be given' (as stated on the prescription) and 'stock strength' (which may also be stated as 'strength available' or 'stock dose' on the bottle) to use in the following formula. $\frac{\text { dose to be given }}{\text { stock strength }}=$ number of tablets

QUESTION 1

If the dose to be given is 1 g and the stock strength is 500 mg , how many tablets are to be given?

Answer:

QUESTION 3

If the dose to be given is 1 g and the stock strength is 1000 mg , how many tablets are to be given?

Answer:

QUESTION 4

If the dose to be given is 0.5 g and the stock strength is 250 mg , how many tablets are to be given?

Answer:

QUESTION 5

If the dose to be given is 0.5 g and the stock strength is 500 mg , how many tablets are to be given?

Answer:

QUESTION 2

If the dose to be given is 2 g and the stock strength is 1000 mg , how many tablets are to be given?

Answer:

